Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 215
Filter
1.
Mol Pharmacol ; 102(1): 1-16, 2022 07.
Article in English | MEDLINE | ID: mdl-35605992

ABSTRACT

CBL0137 is a lead drug for human African trypanosomiasis, caused by Trypanosoma brucei Herein, we use a four-step strategy to 1) identify physiologic targets and 2) determine modes of molecular action of CBL0137 in the trypanosome. First, we identified fourteen CBL0137-binding proteins using affinity chromatography. Second, we developed hypotheses of molecular modes of action, using predicted functions of CBL0137-binding proteins as guides. Third, we documented effects of CBL0137 on molecular pathways in the trypanosome. Fourth, we identified physiologic targets of the drug by knocking down genes encoding CBL0137-binding proteins and comparing their molecular effects to those obtained when trypanosomes were treated with CBL0137. CBL0137-binding proteins included glycolysis enzymes (aldolase, glyceraldehyde-3-phosphate dehydrogenase, phosphofructokinase, phosphoglycerate kinase) and DNA-binding proteins [universal minicircle sequence binding protein 2, replication protein A1 (RPA1), replication protein A2 (RPA2)]. In chemical biology studies, CBL0137 did not reduce ATP level in the trypanosome, ruling out glycolysis enzymes as crucial targets for the drug. Thus, many CBL0137-binding proteins are not physiologic targets of the drug. CBL0137 inhibited 1) nucleus mitosis, 2) nuclear DNA replication, and 3) polypeptide synthesis as the first carbazole inhibitor of eukaryote translation. RNA interference (RNAi) against RPA1 inhibited both DNA synthesis and mitosis, whereas RPA2 knockdown inhibited mitosis, consistent with both proteins being physiologic targets of CBL0137. Principles used here to distinguish drug-binding proteins from physiologic targets of CBL0137 can be deployed with different drugs in other biologic systems. SIGNIFICANCE STATEMENT: To distinguish drug-binding proteins from physiologic targets in the African trypanosome, we devised and executed a multidisciplinary approach involving biochemical, genetic, cell, and chemical biology experiments. The strategy we employed can be used for drugs in other biological systems.


Subject(s)
Trypanosoma brucei brucei , Trypanosomiasis, African , Animals , Humans , Trypanosomiasis, African/drug therapy , Trypanosomiasis, African/metabolism , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/metabolism , Carbazoles/pharmacology , Drug Development
2.
Molecules ; 27(3)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35164094

ABSTRACT

The first stage of the drug discovery process involves the identification of small compounds with biological activity. Iboga alkaloids are monoterpene indole alkaloids (MIAs) containing a fused isoquinuclidine-tetrahydroazepine ring. Both the natural products and the iboga-inspired synthetic analogs have shown a wide variety of biological activities. Herein, we describe the chemoenzymatic preparation of a small library of novel N-indolylethyl-substituted isoquinuclidines as iboga-inspired compounds, using toluene as a starting material and an imine Diels-Alder reaction as the key step in the synthesis. The new iboga series was investigated for its potential to promote the release of glial cell line-derived neurotrophic factor (GDNF) by C6 glioma cells, and to inhibit the growth of infective trypanosomes. GDNF is a neurotrophic factor widely recognized by its crucial role in development, survival, maintenance, and protection of dopaminergic neuronal circuitries affected in several neurological and psychiatric pathologies. Four compounds of the series showed promising activity as GDNF releasers, and a leading structure (compound 11) was identified for further studies. The same four compounds impaired the growth of bloodstream Trypanosoma brucei brucei (EC50 1-8 µM) and two of them (compounds 6 and 14) showed a good selectivity index.


Subject(s)
Alkaloids , Antiprotozoal Agents , Glial Cell Line-Derived Neurotrophic Factor/biosynthesis , Tabernaemontana/chemistry , Trypanosoma brucei brucei/growth & development , Trypanosomiasis, African/drug therapy , Alkaloids/chemical synthesis , Alkaloids/chemistry , Alkaloids/pharmacology , Animals , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/pharmacology , Cell Line, Tumor , Mice , Rats , Trypanosomiasis, African/metabolism , Trypanosomiasis, African/pathology
3.
Cell Rep ; 37(5): 109923, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34731611

ABSTRACT

The dense variant surface glycoprotein (VSG) coat of African trypanosomes represents the primary host-pathogen interface. Antigenic variation prevents clearing of the pathogen by employing a large repertoire of antigenically distinct VSG genes, thus neutralizing the host's antibody response. To explore the epitope space of VSGs, we generate anti-VSG nanobodies and combine high-resolution structural analysis of VSG-nanobody complexes with binding assays on living cells, revealing that these camelid antibodies bind deeply inside the coat. One nanobody causes rapid loss of cellular motility, possibly due to blockage of VSG mobility on the coat, whose rapid endocytosis and exocytosis are mechanistically linked to Trypanosoma brucei propulsion and whose density is required for survival. Electron microscopy studies demonstrate that this loss of motility is accompanied by rapid formation and shedding of nanovesicles and nanotubes, suggesting that increased protein crowding on the dense membrane can be a driving force for membrane fission in living cells.


Subject(s)
Cell Membrane/drug effects , Cell Movement/drug effects , Single-Domain Antibodies/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects , Trypanosomiasis, African/drug therapy , Variant Surface Glycoproteins, Trypanosoma/immunology , Animals , Antibody Specificity , Binding Sites, Antibody , Camelids, New World/immunology , Cell Line , Cell Membrane/immunology , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Endocytosis/drug effects , Epitopes , Exocytosis/drug effects , Protein Binding , Single-Domain Antibodies/immunology , Single-Domain Antibodies/metabolism , Trypanocidal Agents/immunology , Trypanocidal Agents/metabolism , Trypanosoma brucei brucei/immunology , Trypanosoma brucei brucei/metabolism , Trypanosoma brucei brucei/ultrastructure , Trypanosomiasis, African/immunology , Trypanosomiasis, African/metabolism , Trypanosomiasis, African/parasitology , Variant Surface Glycoproteins, Trypanosoma/metabolism
4.
J Immunol ; 207(10): 2551-2560, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34635586

ABSTRACT

The protozoan parasite Trypanosoma brucei is the causative agent of the neglected tropical disease human African trypanosomiasis, otherwise known as sleeping sickness. Trypanosomes have evolved many immune-evasion mechanisms to facilitate their own survival, as well as prolonging host survival to ensure completion of the parasitic life cycle. A key feature of the bloodstream form of T. brucei is the secretion of aromatic keto acids, which are metabolized from tryptophan. In this study, we describe an immunomodulatory role for one of these keto acids, indole-3-pyruvate (I3P). We demonstrate that I3P inhibits the production of PGs in activated macrophages. We also show that, despite the reduction in downstream PGs, I3P augments the expression of cyclooxygenase (COX2). This increase in COX2 expression is mediated in part via inhibition of PGs relieving a negative-feedback loop on COX2. Activation of the aryl hydrocarbon receptor also participates in this effect. However, the increase in COX2 expression is of little functionality, as we also provide evidence to suggest that I3P targets COX activity. This study therefore details an evasion strategy by which a trypanosome-secreted metabolite potently inhibits macrophage-derived PGs, which might promote host and trypanosome survival.


Subject(s)
Cyclooxygenase 2/metabolism , Indoles/metabolism , Macrophages/immunology , Prostaglandins/metabolism , Trypanosomiasis, African/immunology , Animals , Humans , Immune Evasion/immunology , Indoles/immunology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Prostaglandins/immunology , Trypanosoma brucei brucei/immunology , Trypanosoma brucei brucei/metabolism , Trypanosomiasis, African/metabolism
5.
Molecules ; 26(15)2021 Jul 25.
Article in English | MEDLINE | ID: mdl-34361641

ABSTRACT

The search for novel antitrypanosomals and the investigation into their mode of action remain crucial due to the toxicity and resistance of commercially available antitrypanosomal drugs. In this study, two novel antitrypanosomals, tortodofuordioxamide (compound 2) and tortodofuorpyramide (compound 3), were chemically derived from the natural N-alkylamide tortozanthoxylamide (compound 1) through structural modification. The chemical structures of these compounds were confirmed through spectrometric and spectroscopic analysis, and their in vitro efficacy and possible mechanisms of action were, subsequently, investigated in Trypanosoma brucei (T. brucei), one of the causative species of African trypanosomiasis (AT). The novel compounds 2 and 3 displayed significant antitrypanosomal potencies in terms of half-maximal effective concentrations (EC50) and selectivity indices (SI) (compound 1, EC50 = 7.3 µM, SI = 29.5; compound 2, EC50 = 3.2 µM, SI = 91.3; compound 3, EC50 = 4.5 µM, SI = 69.9). Microscopic analysis indicated that at the EC50 values, the compounds resulted in the coiling and clumping of parasite subpopulations without significantly affecting the normal ratio of nuclei to kinetoplasts. In contrast to the animal antitrypanosomal drug diminazene, compounds 1, 2 and 3 exhibited antioxidant absorbance properties comparable to the standard antioxidant Trolox (Trolox, 0.11 A; diminazene, 0.50 A; compound 1, 0.10 A; compound 2, 0.09 A; compound 3, 0.11 A). The analysis of growth kinetics suggested that the compounds exhibited a relatively gradual but consistent growth inhibition of T. brucei at different concentrations. The results suggest that further pharmacological optimization of compounds 2 and 3 may facilitate their development into novel AT chemotherapy.


Subject(s)
Trypanocidal Agents , Trypanosoma brucei brucei/growth & development , Trypanosomiasis, African/drug therapy , Animals , Mice , RAW 264.7 Cells , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology , Trypanosomiasis, African/metabolism
6.
PLoS Pathog ; 17(6): e1009696, 2021 06.
Article in English | MEDLINE | ID: mdl-34161395

ABSTRACT

Iron is an essential regulatory signal for virulence factors in many pathogens. Mammals and bloodstream form (BSF) Trypanosoma brucei obtain iron by receptor-mediated endocytosis of transferrin bound to receptors (TfR) but the mechanisms by which T. brucei subsequently handles iron remains enigmatic. Here, we analyse the transcriptome of T. brucei cultured in iron-rich and iron-poor conditions. We show that adaptation to iron-deprivation induces upregulation of TfR, a cohort of parasite-specific genes (ESAG3, PAGS), genes involved in glucose uptake and glycolysis (THT1 and hexokinase), endocytosis (Phosphatidic Acid Phosphatase, PAP2), and most notably a divergent RNA binding protein RBP5, indicative of a non-canonical mechanism for regulating intracellular iron levels. We show that cells depleted of TfR by RNA silencing import free iron as a compensatory survival strategy. The TfR and RBP5 iron response are reversible by genetic complementation, the response kinetics are similar, but the regulatory mechanisms are distinct. Increased TfR protein is due to increased mRNA. Increased RBP5 expression, however, occurs by a post-transcriptional feedback mechanism whereby RBP5 interacts with its own, and with PAP2 mRNAs. Further observations suggest that increased RBP5 expression in iron-deprived cells has a maximum threshold as ectopic overexpression above this threshold disrupts normal cell cycle progression resulting in an accumulation of anucleate cells and cells in G2/M phase. This phenotype is not observed with overexpression of RPB5 containing a point mutation (F61A) in its single RNA Recognition Motif. Our experiments shed new light on how T. brucei BSFs reorganise their transcriptome to deal with iron stress revealing the first iron responsive RNA binding protein that is co-regulated with TfR, is important for cell viability and iron homeostasis; two essential processes for successful proliferation.


Subject(s)
Adaptation, Physiological/physiology , Iron/metabolism , Protozoan Proteins/metabolism , Trypanosoma brucei brucei/metabolism , Cells, Cultured , Homeostasis/physiology , RNA-Binding Proteins/metabolism , Receptors, Transferrin/metabolism , Transcriptome , Trypanosomiasis, African/metabolism
7.
Parasitol Int ; 84: 102379, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34000424

ABSTRACT

Membrane and secretory proteins are synthesized by ribosomes and then enter the endoplasmic reticulum (ER) where they undergo glycosylation and quality control for proper folding. Subsequently, proteins are transported to the Golgi apparatus and then sorted to the plasma membrane or intracellular organelles. Transport vesicles are formed at ER-exit sites (ERES) on the ER with several coat protein complexes. Cargo proteins loaded into the vesicles are selected by specific interactions with cargo receptors and/or adaptors during vesicle formation. p24 family and intracellular lectin ERGIC-53-membrane proteins are the known cargo receptors acting in the early secretory pathway (ER-Golgi). Oligomerization of the cargo receptors have been suggested to play an important role in cargo selection and sorting via posttranslational modifications in fungi and metazoans. On the other hand, the mechanisms involved in the early secretory pathway in protozoa remain unclear. In this review, we focus on Trypanosoma brucei as a representative of protozoan and discuss differences and commonalities in the molecular mechanisms of its early secretory pathway compared with other organisms.


Subject(s)
Membrane Proteins/metabolism , Protozoan Proteins/metabolism , Trypanosoma/metabolism , Africa , Endoplasmic Reticulum/metabolism , Golgi Apparatus/metabolism , Protein Transport , Secretory Pathway , Trypanosomiasis, African/metabolism
8.
PLoS Negl Trop Dis ; 15(4): e0009276, 2021 04.
Article in English | MEDLINE | ID: mdl-33857146

ABSTRACT

BACKGROUND: Human African trypanosomiasis (HAT or sleeping sickness) is caused by the parasite Trypanosoma brucei sspp. The disease has two stages, a haemolymphatic stage after the bite of an infected tsetse fly, followed by a central nervous system stage where the parasite penetrates the brain, causing death if untreated. Treatment is stage-specific, due to the blood-brain barrier, with less toxic drugs such as pentamidine used to treat stage 1. The objective of our research programme was to develop an intravenous formulation of pentamidine which increases CNS exposure by some 10-100 fold, leading to efficacy against a model of stage 2 HAT. This target candidate profile is in line with drugs for neglected diseases inititative recommendations. METHODOLOGY: To do this, we evaluated the physicochemical and structural characteristics of formulations of pentamidine with Pluronic micelles (triblock-copolymers of polyethylene-oxide and polypropylene oxide), selected candidates for efficacy and toxicity evaluation in vitro, quantified pentamidine CNS delivery of a sub-set of formulations in vitro and in vivo, and progressed one pentamidine-Pluronic formulation for further evaluation using an in vivo single dose brain penetration study. PRINCIPAL FINDINGS: Screening pentamidine against 40 CNS targets did not reveal any major neurotoxicity concerns, however, pentamidine had a high affinity for the imidazoline2 receptor. The reduction in insulin secretion in MIN6 ß-cells by pentamidine may be secondary to pentamidine-mediated activation of ß-cell imidazoline receptors and impairment of cell viability. Pluronic F68 (0.01%w/v)-pentamidine formulation had a similar inhibitory effect on insulin secretion as pentamidine alone and an additive trypanocidal effect in vitro. However, all Pluronics tested (P85, P105 and F68) did not significantly enhance brain exposure of pentamidine. SIGNIFICANCE: These results are relevant to further developing block-copolymers as nanocarriers, improving BBB drug penetration and understanding the side effects of pentamidine.


Subject(s)
Blood-Brain Barrier/metabolism , Pentamidine/pharmacokinetics , Trypanocidal Agents/pharmacokinetics , Trypanosomiasis, African/metabolism , Animals , Female , Humans , Male , Mice , Mice, Inbred BALB C , Neglected Diseases/drug therapy , Pentamidine/therapeutic use , Trypanocidal Agents/therapeutic use , Trypanosoma brucei gambiense , Trypanosoma brucei rhodesiense , Trypanosomiasis, African/diagnosis , Trypanosomiasis, African/drug therapy , Tsetse Flies/parasitology
9.
Sci Rep ; 11(1): 5390, 2021 03 08.
Article in English | MEDLINE | ID: mdl-33686109

ABSTRACT

Propolis, is a gummy material produced by honey bees from different parts of plants and is enriched with varied biological active compounds like flavonoids, phenolics and phenolic acids with wide applicability in the food, pharmaceutical and cosmetics industries. The current report is focused on the characterisation of propolis collected from Asir region, South-west of Saudi Arabia and its effect on Trypanosoma brucei (the causative organism of African sleeping sickness) and cytotoxic effect against U937 human leukemia cells. The Chemical composition and spectral characteristics of Saudi propolis was studied by Liquid Chromatography Mass Spectrometry (LC-MS) and High-performance liquid chromatography-evaporative light scattering detector (HPLC-ELSD).The two main active compounds isolated from Saudi propolis via column chromatography and size exclusion chromatography were fisetinidol and ferulic acid. High resolution electrospray ionization-mass spectrophotometer (HRESI-MS) and nuclear magnetic resonance (NMR) were used to elucidate the structures of the isolated compounds. All crudes extracts, fractions as well as isolated compounds were subjected for biological testing against Trypanosoma brucei (S427 WT), and their cytotoxicity against U937 human leukemia cells. Amongst the various samples investigated, S-6 fraction demonstrated highest anti-trypanosomal activity at 2.4 µg/ml MIC followed by fisetinidol at 4.7 µg/ml reflecting that the anti-trypanosomal activity is attributable to the presence of fisetinidol in the fraction. Similarly, all the tested samples exhibited cytotoxicity with an IC50 > 60 µg/ml. S-6 fractions exhibited highest cytotoxic activity against U937 cells with an IC50 of 58.7 µg/ml followed by ferulic acid with an IC50 87.7 µg/ml indicating that the cytotoxic effect of propolis might be due to the presence of ferulic acid. In conclusion, the biological activity of propolis could be attributed to the synergistic action of the two active compounds-ferulic acid and fisetinidol. The data obtained in the study is thus indicative of the role of propolis as potential anti-trypanosomal and anticancer agent for effective cancer therapy.


Subject(s)
Antineoplastic Agents , Neoplasms/drug therapy , Propolis , Trypanocidal Agents , Trypanosoma brucei brucei/growth & development , Trypanosomiasis, African/drug therapy , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Humans , Neoplasms/metabolism , Propolis/chemistry , Propolis/pharmacology , Saudi Arabia , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology , Trypanosomiasis, African/metabolism , U937 Cells
10.
Curr Opin Immunol ; 72: 13-20, 2021 10.
Article in English | MEDLINE | ID: mdl-33721725

ABSTRACT

Human African trypanosomiasis, or sleeping sickness, results from infection by two subspecies of the protozoan flagellate parasite Trypanosoma brucei, termed Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense, prevalent in western and eastern Africa respectively. These subspecies escape the trypanolytic potential of human serum, which efficiently acts against the prototype species Trypanosoma brucei brucei, responsible for the Nagana disease in cattle. We review the various strategies and components used by trypanosomes to counteract the immune defences of their host, highlighting the adaptive genomic evolution that occurred in both parasite and host to take the lead in this battle. The main parasite surface antigen, named Variant Surface Glycoprotein or VSG, appears to play a key role in different processes involved in the dialogue with the host.


Subject(s)
Disease Susceptibility/immunology , Genetic Predisposition to Disease , Trypanosomiasis, African/etiology , Adaptive Immunity , Apolipoprotein L1/genetics , Apolipoprotein L1/metabolism , Disease Resistance/genetics , Disease Resistance/immunology , Gene Expression Regulation , Genetic Variation , Host-Parasite Interactions/genetics , Host-Parasite Interactions/immunology , Humans , Immunity, Innate , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Protein Binding , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Protozoan Proteins/metabolism , Trypanosoma brucei gambiense/immunology , Trypanosomiasis, African/metabolism
11.
Nat Commun ; 12(1): 1052, 2021 02 16.
Article in English | MEDLINE | ID: mdl-33594070

ABSTRACT

The parasitic protist Trypanosoma brucei is the causative agent of Human African Trypanosomiasis, also known as sleeping sickness. The parasite enters the blood via the bite of the tsetse fly where it is wholly reliant on glycolysis for the production of ATP. Glycolytic enzymes have been regarded as challenging drug targets because of their highly conserved active sites and phosphorylated substrates. We describe the development of novel small molecule allosteric inhibitors of trypanosome phosphofructokinase (PFK) that block the glycolytic pathway resulting in very fast parasite kill times with no inhibition of human PFKs. The compounds cross the blood brain barrier and single day oral dosing cures parasitaemia in a stage 1 animal model of human African trypanosomiasis. This study demonstrates that it is possible to target glycolysis and additionally shows how differences in allosteric mechanisms may allow the development of species-specific inhibitors to tackle a range of proliferative or infectious diseases.


Subject(s)
Glycolysis/drug effects , Phosphofructokinases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Trypanosoma/enzymology , Trypanosomiasis, African/metabolism , Trypanosomiasis, African/parasitology , Acute Disease , Allosteric Regulation/drug effects , Animals , Hep G2 Cells , Humans , Inhibitory Concentration 50 , Kaplan-Meier Estimate , Mice , Parasites/drug effects , Phosphofructokinases/chemistry , Phosphofructokinases/metabolism , Protein Binding/drug effects , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Protein Multimerization , Structure-Activity Relationship , Trypanosoma/drug effects , Trypanosomiasis, African/drug therapy
12.
FEBS J ; 288(2): 360-381, 2021 01.
Article in English | MEDLINE | ID: mdl-32530132

ABSTRACT

The discovery that apolipoprotein L1 (APOL1) is the trypanolytic factor of human serum raised interest about the function of APOLs, especially following the unexpected finding that in addition to their protective action against sleeping sickness, APOL1 C-terminal variants also cause kidney disease. Based on the analysis of the structure and trypanolytic activity of APOL1, it was proposed that APOLs could function as ion channels of intracellular membranes and be involved in mechanisms triggering programmed cell death. In this review, the recent finding that APOL1 and APOL3 inversely control the synthesis of phosphatidylinositol-4-phosphate (PI(4)P) by the Golgi PI(4)-kinase IIIB (PI4KB) is commented. APOL3 promotes Ca2+ -dependent activation of PI4KB, but due to their increased interaction with APOL3, APOL1 C-terminal variants can inactivate APOL3, leading to reduction of Golgi PI(4)P synthesis. The impact of APOLs on several pathological processes that depend on Golgi PI(4)P levels is discussed. I propose that through their effect on PI4KB activity, APOLs control not only actomyosin activities related to vesicular trafficking, but also the generation and elongation of autophagosomes induced by inflammation.


Subject(s)
Apolipoprotein L1/genetics , Apolipoproteins L/genetics , Autistic Disorder/genetics , Neoplasms/genetics , Renal Insufficiency/genetics , Schizophrenia/genetics , Virus Diseases/genetics , Actomyosin/genetics , Actomyosin/metabolism , Animals , Apolipoprotein L1/metabolism , Apolipoproteins L/metabolism , Autistic Disorder/metabolism , Autistic Disorder/pathology , Autophagosomes/metabolism , Calcium/metabolism , Gene Expression Regulation , Golgi Apparatus/metabolism , Humans , Neoplasms/metabolism , Neoplasms/pathology , Phosphatidylinositol Phosphates/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Renal Insufficiency/metabolism , Renal Insufficiency/pathology , Schizophrenia/metabolism , Schizophrenia/pathology , Trypanosomiasis, African/drug therapy , Trypanosomiasis, African/genetics , Trypanosomiasis, African/metabolism , Trypanosomiasis, African/parasitology , Virus Diseases/metabolism , Virus Diseases/pathology
13.
Mol Biochem Parasitol ; 241: 111348, 2021 01.
Article in English | MEDLINE | ID: mdl-33352254

ABSTRACT

The bloodstream form of Trypanosoma brucei persists in mammalian hosts through a population survival strategy depending on antigenic variation of a cell surface coat composed of the variant surface glycoprotein (VSG). The integrity of the VSG coat is essential and blocking its synthesis results in a cell division cycle arrest just prior to cytokinesis. This observation indicates that VSG levels are monitored and that the cell has mechanisms to respond to a disruption of synthesis. Here, the regulation of VSG mRNA levels has been investigated by first measuring VSG mRNA copy number, and second using ectopic expression of VSG transgenes containing premature termination codons. The findings are that (i) VSG mRNA copy number varies with the identity of the VSG and (ii) a pathway detects synthesis of non-functional VSG protein and results in an increase in VSG mRNA levels.


Subject(s)
Gene Expression Regulation , Trypanosoma brucei brucei/physiology , Trypanosomiasis, African/parasitology , Variant Surface Glycoproteins, Trypanosoma/genetics , Cell Line , Host-Parasite Interactions , RNA, Messenger/genetics , Trypanosomiasis, African/metabolism , Variant Surface Glycoproteins, Trypanosoma/metabolism
14.
Front Immunol ; 10: 2673, 2019.
Article in English | MEDLINE | ID: mdl-31824484

ABSTRACT

It is known that Trypanosoma congolense infection in mice is associated with increased production of proinflammatory cytokines by macrophages and monocytes. However, the intracellular signaling pathways leading to the production of these cytokines still remain unknown. In this paper, we have investigated the innate receptors and intracellular signaling pathways that are associated with T. congolense-induced proinflammatory cytokine production in macrophages. We show that the production of IL-6, IL-12, and TNF-α by macrophages in vitro and in vivo following interaction with T. congolense is dependent on phosphorylation of mitogen-activated protein kinase (MAPK) including ERK, p38, JNK, and signal transducer and activation of transcription (STAT) proteins. Specific inhibition of MAPKs and STATs signaling pathways significantly inhibited T. congolense-induced production of proinflammatory cytokines in macrophages. We further show that T. congolense-induced proinflammatory cytokine production in macrophages is mediated via Toll-like receptor 2 (TLR2) and involves the adaptor molecule, MyD88. Deficiency of MyD88 and TLR2 leads to impaired cytokine production by macrophages in vitro and acute death of T. congolense-infected relatively resistant mice. Collectively, our results provide insight into T. congolense-induced activation of the immune system that leads to the production of proinflammatory cytokines and resistance to the infection.


Subject(s)
Myeloid Differentiation Factor 88/metabolism , Toll-Like Receptor 2/metabolism , Trypanosomiasis, African/immunology , Trypanosomiasis, African/metabolism , Adenylate Kinase/immunology , Adenylate Kinase/metabolism , Animals , Cytokines/biosynthesis , Enzyme Activation/immunology , Female , Macrophages/immunology , Mice , Mice, Inbred C57BL , Myeloid Differentiation Factor 88/immunology , STAT Transcription Factors/immunology , STAT Transcription Factors/metabolism , Toll-Like Receptor 2/immunology , Trypanosoma congolense/immunology
15.
Article in English | MEDLINE | ID: mdl-31824868

ABSTRACT

Human African trypanosomiasis (HAT) caused by the extracellular protozoon Trypanosoma brucei, is a neglected tropical disease affecting the poorest communities in sub-Saharan Africa. HAT progresses from a hemolymphatic first stage (S1) to a meningo-encephalitic late stage (S2) when parasites reach the central nervous system (CNS), although the existence of an intermediate stage (Int.) has also been proposed. The pathophysiological mechanisms associated with the development of S2 encephalopathy are yet to be fully elucidated. Here we hypothesized that HAT progression toward S2 might be accompanied by an increased release of microvesicles (MVs), sub-micron elements (0.1-1 µm) involved in inflammatory processes and in the determination of the outcome of infections. We studied the morphology of MVs isolated from HAT cerebrospinal fluid (CSF) by transmission electron microscopy (TEM) and used flow cytometry to show that total-MVs and leukocyte derived-CD45+ MVs are significantly increased in concentration in S2 patients' CSF compared to S1 and Int. samples (n = 12 per group). To assess potential biological properties of these MVs, immortalized human astrocytes were exposed, in vitro, to MVs enriched from S1, Int. or S2 CSF. Data-independent acquisition mass spectrometry analyses showed that S2 MVs induced, compared to Int. or S1 MVs, a strong proteome modulation in astrocytes that resembled the one produced by IFN-γ, a key molecule in HAT pathogenesis. Our results indicate that HAT S2 CSF harbors MVs potentially involved in the mechanisms of pathology associated with HAT late stage. Such vesicles might thus represent a new player to consider in future functional studies.


Subject(s)
Astrocytes/metabolism , Extracellular Vesicles/metabolism , Trypanosoma brucei gambiense , Trypanosomiasis, African/metabolism , Biomarkers , Congo , Extracellular Vesicles/ultrastructure , Female , Flow Cytometry , Host-Parasite Interactions , Humans , Male , Neglected Diseases , Proteome , Proteomics , Trypanosomiasis, African/cerebrospinal fluid , Trypanosomiasis, African/diagnosis , Trypanosomiasis, African/parasitology
16.
Curr Drug Targets ; 20(12): 1295-1314, 2019.
Article in English | MEDLINE | ID: mdl-31215385

ABSTRACT

BACKGROUND: Human African Trypanosomiasis (HAT), also known as sleeping sickness is one of the 20 neglected tropical diseases listed by the World Health Organization, which lead to death if left untreated. This disease is caused by Trypanosoma brucei gambiense, which is the chronic form of the disease present in western and central Africa, and by T. brucei rhodesiense, which is the acute form of the disease located in eastern and southern Africa. Many reports have highlighted the effectiveness of flavonoid-based compounds against T. brucei. OBJECTIVE: The present review summarizes the current standings and perspectives for the use of flavonoids as lead compounds for the potential treatment of HAT. METHODS: A literature search was conducted for naturally occurring and synthetic anti-T brucei flavonoids by referencing textbooks and scientific databases (SciFinder, PubMed, Science Direct, Wiley, ACS, SciELO, Google Scholar, Springer, among others) from their inception until February 2019. RESULTS: Flavonoids isolated from different parts of plants and species were reported to exhibit moderate to high in vitro antitrypanosomal activity against T. brucei. In addition, synthetic flavonoids revealed anti-T. brucei activity. Molecular interactions of bioactive flavonoids with T. brucei protein targets showed promising results. CONCLUSION: According to in vitro anti-T brucei studies, there is evidence that flavonoids might be lead compounds for the potential treatment of HAT. However, toxicological studies, as well as the mechanism of action of the in vitro active flavonoids are needed to support their use as potential leads for the treatment of HAT.


Subject(s)
Antiprotozoal Agents/pharmacology , Flavonoids/pharmacology , Plants/chemistry , Trypanosoma brucei brucei/drug effects , Trypanosomiasis, African/drug therapy , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/therapeutic use , Drug Discovery , Flavonoids/chemistry , Flavonoids/therapeutic use , Humans , Molecular Structure , Neglected Diseases , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Signal Transduction/drug effects , Trypanosomiasis, African/metabolism
17.
Biosci Rep ; 39(5)2019 05 31.
Article in English | MEDLINE | ID: mdl-31043451

ABSTRACT

Trypanosoma brucei, a protist parasite that causes African trypanosomiasis or sleeping sickness, relies mainly on glycolysis for ATP production when in its mammalian host. Glycolysis occurs within a peroxisome-like organelle named the glycosome. Previous work from our laboratory reported the presence of significant amounts of inorganic polyphosphate (polyP), a polymer of three to hundreds of orthophosphate units, in the glycosomes and nucleoli of T. brucei In this work, we identified and characterized the activity of two Nudix hydrolases (NHs), T. brucei Nudix hydrolase (TbNH) 2 and TbNH4, one located in the glycosomes and the other in the cytosol and nucleus, respectively, which can degrade polyP. We found that TbNH2 is an exopolyphosphatase with higher activity on short chain polyP, while TbNH4 is an endo- and exopolyphosphatase that has similar activity on polyP of various chain sizes. Both enzymes have higher activity at around pH 8.0. We also found that only TbNH2 can dephosphorylate ATP and ADP but with lower affinity than for polyP. Our results suggest that NHs can participate in polyP homeostasis and therefore may help control polyP levels in glycosomes, cytosol and nuclei of T. brucei.


Subject(s)
Acid Anhydride Hydrolases/pharmacology , Cell Nucleus/drug effects , Cytosol/drug effects , Microbodies/drug effects , Polyphosphates/pharmacology , Pyrophosphatases/pharmacology , Trypanosoma brucei brucei/drug effects , Acid Anhydride Hydrolases/metabolism , Animals , Cell Nucleus/metabolism , Cytosol/metabolism , Female , Mice , Microbodies/metabolism , Peroxisomes/drug effects , Peroxisomes/metabolism , Protozoan Proteins/metabolism , Trypanosoma brucei brucei/metabolism , Trypanosomiasis, African/drug therapy , Trypanosomiasis, African/metabolism , Nudix Hydrolases
18.
PLoS Pathog ; 15(2): e1007470, 2019 02.
Article in English | MEDLINE | ID: mdl-30817773

ABSTRACT

Tsetse flies (Glossina spp.) vector pathogenic trypanosomes (Trypanosoma spp.) in sub-Saharan Africa. These parasites cause human and animal African trypanosomiases, which are debilitating diseases that inflict an enormous socio-economic burden on inhabitants of endemic regions. Current disease control strategies rely primarily on treating infected animals and reducing tsetse population densities. However, relevant programs are costly, labor intensive and difficult to sustain. As such, novel strategies aimed at reducing tsetse vector competence require development. Herein we investigated whether Kosakonia cowanii Zambiae (Kco_Z), which confers Anopheles gambiae with resistance to Plasmodium, is able to colonize tsetse and induce a trypanosome refractory phenotype in the fly. Kco_Z established stable infections in tsetse's gut and exhibited no adverse effect on the fly's survival. Flies with established Kco_Z infections in their gut were significantly more refractory to infection with two distinct trypanosome species (T. congolense, 6% infection; T. brucei, 32% infection) than were age-matched flies that did not house the exogenous bacterium (T. congolense, 36% infected; T. brucei, 70% infected). Additionally, 52% of Kco_Z colonized tsetse survived infection with entomopathogenic Serratia marcescens, compared with only 9% of their wild-type counterparts. These parasite and pathogen refractory phenotypes result from the fact that Kco_Z acidifies tsetse's midgut environment, which inhibits trypanosome and Serratia growth and thus infection establishment. Finally, we determined that Kco_Z infection does not impact the fecundity of male or female tsetse, nor the ability of male flies to compete with their wild-type counterparts for mates. We propose that Kco_Z could be used as one component of an integrated strategy aimed at reducing the ability of tsetse to transmit pathogenic trypanosomes.


Subject(s)
Trypanosoma brucei brucei/pathogenicity , Trypanosoma congolense/pathogenicity , Trypanosomiasis, African/prevention & control , Tsetse Flies/microbiology , Tsetse Flies/parasitology , Adult , Africa South of the Sahara , Animals , Anopheles/microbiology , Enterobacteriaceae , Female , Humans , Male , Mosquito Vectors/microbiology , Mosquito Vectors/parasitology , Symbiosis , Trypanosomiasis, African/metabolism , Trypanosomiasis, African/microbiology , Trypanosomiasis, African/parasitology
19.
Article in English | MEDLINE | ID: mdl-30670439

ABSTRACT

Fexinidazole is a novel oral treatment for human African trypanosomiasis caused by Trypanosoma brucei gambiense (g-HAT). Fexinidazole also has activity against T. cruzi, the causative agent of Chagas disease. During the course of a dose ranging assessment in patients with chronic indeterminate Chagas disease, delayed neutropenia and significant increases in hepatic transaminases were observed and clinical investigations were suspended. We retrospectively analyzed all available pharmacokinetic and pharmacodynamic data on fexinidazole in normal healthy volunteers and in patients with Chagas disease and g-HAT to assess the determinants of toxicity. A population pharmacokinetic model was fitted to plasma concentrations (n = 4,549) of the bioactive fexinidazole sulfone metabolite, accounting for the majority of the bioactive exposure, from three phase 1 studies, two g-HAT phase 2/3 field trials, and one Chagas disease phase 2 field trial (n = 462 individuals in total). Bayesian exposure-response models were then fitted to hematological and liver-related pharmacodynamic outcomes in Chagas disease patients. Neutropenia, reductions in platelet counts, and elevations in liver transaminases were all found to be exposure dependent and, thus, dose dependent in patients with Chagas disease. Clinically insignificant transient reductions in neutrophil and platelet counts consistent with these exposure-response relationships were observed in patients with g-HAT. In contrast, no evidence of hepatotoxicity was observed in patients with g-HAT. Fexinidazole treatment results in a dose-dependent liver toxicity and transient bone marrow suppression in Chagas disease patients. Regimens of shorter duration should be evaluated in clinical trials with patients with Chagas disease. The currently recommended regimen for sleeping sickness provides exposures within a satisfactory safety margin for bone marrow suppression and does not cause hepatotoxicity.


Subject(s)
Bone Marrow/drug effects , Liver/drug effects , Nitroimidazoles/adverse effects , Nitroimidazoles/pharmacokinetics , Trypanocidal Agents/adverse effects , Trypanocidal Agents/pharmacokinetics , Administration, Oral , Animals , Bayes Theorem , Bone Marrow/metabolism , Chagas Disease/drug therapy , Chagas Disease/metabolism , Clinical Trials as Topic , Disease Models, Animal , Double-Blind Method , Humans , Liver/metabolism , Male , Nitroimidazoles/pharmacology , Randomized Controlled Trials as Topic , Sulfones/adverse effects , Sulfones/pharmacokinetics , Sulfones/pharmacology , Treatment Outcome , Trypanocidal Agents/pharmacology , Trypanosoma brucei gambiense/drug effects , Trypanosomiasis, African/drug therapy , Trypanosomiasis, African/metabolism
20.
J Proteomics ; 196: 150-161, 2019 03 30.
Article in English | MEDLINE | ID: mdl-30414516

ABSTRACT

Human African trypanosomiasis (HAT) is a neglected tropical disease that is endemic in sub-Saharan Africa. Control of the disease has been recently improved by better screening and treatment strategies, and the disease is on the WHO list of possible elimination. However, some physiopathological aspects of the disease transmission and progression remain unclear. We propose a new proteomic approach to identify new targets and thus possible new biomarkers of the disease. We also focused our attention on fluids classically associated with HAT (serum and cerebrospinal fluid (CSF)) and on the more easily accessible biological fluids urine and saliva. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) established the proteomic profile of patients with early and late stage disease. The serum, CSF, urine and saliva of 3 uninfected controls, 3 early stage patients and 4 late stage patients were analyzed. Among proteins identified, in CSF, urine and saliva, respectively, 37, 8 and 24 proteins were differentially expressed and showed particular interest with regards to their function. The most promising proteins (Neogenin, Neuroserpin, secretogranin 2 in CSF; moesin in urine and intelectin 2 in saliva) were quantified by enzyme-linked immunosorbent assay in a confirmatory cohort of 14 uninfected controls, 23 patients with early stage disease and 43 patients with late stage disease. The potential of two proteins, neuroserpin and moesin, with the latter present in urine, were further characterized. Our results showed the potential of proteomic analysis to discover new biomarkers and provide the basis of the establishment of a new proteomic catalogue applied to HAT-infected subjects and controls. SIGNIFICANCE: Sleeping sickness, also called Human African Trypanosomiasis (HAT), is a parasitic infection caused by a parasitic protozoan, Trypanosoma brucei gambiense or T. b. rhodesiense which are transmitted via an infected tsetse fly: Glossina. For both, the haemolymphatic stage (or first stage) signs and symptoms are intermittent fever, lymphadenopathy, hepatosplenomegaly, headaches, pruritus, and for T. b. rhodesiense infection a chancre is often formed at the bite site. Meningoencephalitic stage (or second stage) occurs when parasites invade the CNS, it is characterised by neurological signs and symptoms such as altered gait, tremors, neuropathy, somnolence which can lead to coma and death if untreated. first stage of the disease is characterizing by fevers, headaches, itchiness, and joint pains and progressive lethargy corresponding to the second stage with confusion, poor coordination, numbness and trouble sleeping. Actually, diagnosing HAT requires specialized expertise and significant resources such as well-equipped health centers and qualified staff. Such resources are lacking in many endemic areas that are often in rural locales, so many individuals with HAT die before the diagnosis is established. In this study, we analysed by mass spectrometry the entire proteome of serum, CSF, urine and saliva samples from infected and non-infected Angolan individuals to define new biomarkers of the disease. This work of proteomics analysis is a preliminary stage to the characterization of the whole proteome, of these 4 biological fluids, of HAT patients. We have identified 69 new biomarkers. Five of them have been thoroughly investigated by ELISA quantification. Neuroserpine and Moesin are respectively promising new biomarkers in CSF and urine's patient for a better diagnosis.


Subject(s)
Body Fluids/metabolism , Proteome/metabolism , Proteomics , Trypanosoma brucei gambiense/metabolism , Trypanosomiasis, African/metabolism , Adolescent , Adult , Aged , Biomarkers/metabolism , Child , Female , Humans , Male , Middle Aged , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...